に同じ書籍を注文されています。
再度ご注文されますか?
著者:Murphy, Kevin P.
【重要事項説明】
1. | 手配先によって価格が異なります。 |
2. | 納期遅延や入手不能となる場合がございます。 |
3. | 海外のクリスマス休暇等、お正月等の長期休暇時期の発注は、納期遅延となる場合がございます。 |
4. | 天候(国内・海外)により空港の発着・貨物受入不能の発生により納期遅延となる場合がございます。 |
5. | 複数冊数のご注文の場合、分納となる場合がございます。 |
6. | 美品のご指定は承りかねます。 |
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty. An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning. • Covers generation of high dimensional outputs, such as images, text, and graphs • Discusses methods for discovering insights about data, based on latent variable models • Considers training and testing under different distributions • Explores how to use probabilistic models and inference for causal inference and decision making • Features online Python code accompaniment
商品コード:1035853165
出版社: The MIT Press
出版年月:
2023/08
ISBN-10: 0262048434
ISBN-13: 978-0-262-04843-9
出版国: アメリカ合衆国
装丁: hardcover/Geb./rel.
媒体: 冊子
ページ数: 1360 p.
ジャンル: 人工知能